Large Selmer groups over number fields

نویسنده

  • Alex Bartel
چکیده

Let p be a prime number and M a quadratic number field, M , Q( √ p) if p ≡ 1 mod 4. We will prove that for any positive integer d there exists a Galois extension F/Q with Galois group D2p and an elliptic curve E/Q such that F contains M and the p-Selmer group of E/F has size at least pd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Large Selmer Rank via an Arithmetic Theory of Local Constants

We obtain lower bounds for Selmer ranks of elliptic curves over dihedral extensions of number fields. Suppose K/k is a quadratic extension of number fields, E is an elliptic curve defined over k, and p is an odd prime. Let K− denote the maximal abelian p-extension of K that is unramified at all primes where E has bad reduction and that is Galois over k with dihedral Galois group (i.e., the gene...

متن کامل

Selmer Groups and Quadratic Reciprocity

In this article we study the 2-Selmer groups of number fields F as well as some related groups, and present connections to the quadratic reciprocity law in F . Let F be a number field; elements in F× that are ideal squares were called singular numbers in the classical literature. They were studied in connection with explicit reciprocity laws, the construction of class fields, or the solution of...

متن کامل

Selmer Groups as Flat Cohomology Groups

Given a prime number p, Bloch and Kato showed how the p8-Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the p-Selmer group Selpm A need not be determined by the mod p Galois representation Arps; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes Σ depen...

متن کامل

Supersingular Locus of Hilbert Modular Varieties, Arithmetic Level Raising, and Selmer Groups

This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we ...

متن کامل

Average size of 2-Selmer groups of elliptic curves over function fields

Employing a geometric setting inspired by the proof of the Fundamental Lemma, we study some counting problems related to the average size of 2-Selmer groups and hence obtain an estimate for it.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008